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Localization and semibounded energy — a weak unique
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Abstract

LetD be a self-adjoint differential operator of Dirac type acting on sections in a vector bundle
over a closed Riemannian manifoldM. Let H be a closedD-invariant subspace of the Hilbert
space of square integrable sections. SupposeD restricted toH is semibounded. We show that every
elementψ ∈ H has the weak unique continuation property, i.e. ifψ vanishes on a nonempty open
subset ofM, then it vanishes on all ofM. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In relativistic quantum mechanics an electron at a fixed timet = 0 is described by a wave
function (a spinor)ψ0 : R3 → C

4 normalized by‖ψ0‖L2(R3) = 1. Usually one interprets
|ψ0(x)|2 as the probability density to find the electron at the pointx at time t = 0. The
dynamics are given by

ψ(t, x) =
(
eitDψ0

)
(x),

whereD is the spacial Dirac operator (possibly coupled to an external field). The spectrum
ofD is unbounded to the left and to the right which causes some interpretational difficulties:
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“But an interacting particle may exchange energy with its environment, and there would then
be nothing to stop it cascading down to infinite negative energy states, emitting an infinite
amount of energy in the process” [11, p. 29]. Of course, this is not a realistic scenario.

The problem is usually overcome by splittingL2(R3,C4) into the spectral subspaces of
positive and negative energy

L2(R3,C4) = Hpos⊕Hneg, (1)

whereHpos/neg the subspace corresponding to the positive/negative part of the spectrum of
D. Here we assume for simplicity that 0 is not in the spectrum. Now one requires a wave
function of the electron to lie inHpos. A ψ0 ∈ Hnegwould be interpreted as a wave function
for the antiparticle, the positron. For the free Dirac operator (without external field) one can
show [12, Corollary 17] that anyψ0 ∈ Hpos (orHneg) has theweak unique continuation
property, i.e. if� ⊂ R3 is nonempty and open, then

ψ0|� = 0 ⇒ ψ0 = 0 onR3.

This means, in particular, that a free electron can never be localized, i.e. the support ofψ0

cannot be contained in a compact set. The proof given in [12, Corollary 17] relies on the
explicit form of the free Dirac operator onR3 and its Fourier transform. We will see that
the weak unique continuation property of elements of semibounded spectral subspaces is
a general fact for operators of Dirac type (see next section for a definition) and for even
more general operators at least if the underlying manifold is closed. Here “closed” means
compact, connected, and without boundary.

Theorem. Let M be a closed Riemannian manifold, letE → M be a Hermitian vector
bundle and let D be a self-adjoint differential operator of Dirac type acting on sections
of E.

Let H ⊂ L2(M,E) be a closed subspace, such thatD(H ∩ dom(D)) ⊂ H and
D|H∩dom(D) is self-adjoint inH. Suppose that the restriction of D toH is semibounded.

Then ifϕ ∈ H vanishes on a nonempty open subset� ⊂ M it actually vanishes on all
of M.

In particular, if we chooseH to be an eigenspace, then this says that eigensections of
D have the weak unique continuation property. This is nontrivial but well-known, see e.g.
[6,7], and we will in fact use this special case in our proof.

It should be mentioned that a splitting as in (1) also occurs in purely mathematical
context. In order to make the Dirac operator on a compact manifold with boundary Fredholm
one imposes the famous Atiyah–Patodi–Singer boundary conditions [2]. These conditions
simply mean that the restriction of the spinor to the boundary must lie inH = Hneg.

Let us emphasize the difference of our theorem to the standard results on the weak unique
continuation property. Usually, one requiresϕ to satisfy a differential equation or at least a
differential inequality of the kind

|1ϕ| ≤ C1|∇ϕ| + C2|ϕ| (2)
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or variations thereof [1,9]. Here1 is an elliptic second-order differential operator with
scalar principal symbol. For1 = D2 this shows in particular, that the theorem is true for
eigensectionsϕ ofD. In contrast, in our theoremϕ does not satisfy a differential inequality.
The assumption of being inH could rather be called aspectral inequalityonϕ. In contrast
to a differential inequality this is no longer a local condition.

2. Some preparations

Let M be a closed Riemannian manifold, letE → M be a Hermitian vector bundle
overM. Denote the Hermitian metric by〈·, ·〉. Let D : C∞(M,E) → C∞(M,E) be
a formally self-adjoint differential operator of first-order. We callD of Dirac type if its
principal symbolσD satisfies the Clifford relations, i.e.

σD(ξ) ◦ σD(η)+ σD(η) ◦ σD(ξ) = 2g(ξ, η)IdE

for all ξ, η ∈ T ∗
pM, p ∈ M. ThenD is an elliptic differential operator, essentially

self-adjoint onC∞(M,E) in L2(M,E). For example, a generalized Dirac operator in
the sense of Gromov and Lawson [8] is of Dirac type.

LetH ⊂ L2(M,E) be a closed subspace, invariant underD, i.e.D(H ∩ dom(D)) ⊂
H, H ∩ dom(D) is dense inH andD|H∩dom(D) =: D|H is self-adjoint. Let{λj } be
the spectrum ofD|H and let {ϕj } be the corresponding eigensections, normalized by
‖ϕj‖L2(M,E) = 1.

We define sectionsϕ∗
j in the dual bundleE∗ by

ϕ∗
j (x)(ψ) := 〈ϕj (x), ψ〉

for all ψ ∈ Ex . Then the integral kernel of the operator eizD|H is defined by

qz(x, y) :=
∑
j

eizλj ϕj (x)⊗ ϕ∗
j (y),

wherez ∈ C, x, y ∈ M. By Hk we denote the Sobolev space ofL2-sections whose
derivatives up to orderk are againL2. For eachz we considerqz as a section in the exterior
tensor productE � E∗ → M ×M, where(E � E∗)(x,y) = Ex ⊗ E∗

y .

Lemma 1. IfD|H is bounded from below, then the seriesqz converges absolutely and locally
uniformly forz ∈ {ζ ∈ C|I(ζ ) > 0} =: h in each Sobolev spaceHk(M ×M,E � E∗).

Proof. If D|H is bounded from below, then only finitely many eigenvaluesλj are nonposi-
tive. Hence we may assume 0< λ1 ≤ λ2 ≤ λ3 ≤ . . . . By ellipticity ofD there is a constant
C1 > 0 s.t.

‖ϕj‖Hk(M,E) ≤ C1

{
‖ϕj‖L2(M,E) + ‖Dkϕj‖L2(M,E)

}
= C1

(
1 + λkj

)
.

Let I(z) ≥ ε > 0. Then
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Fig. 1.

‖qz‖Hk(M×M,E�E∗) ≤
∑
j

e−I(z)λj ‖ϕj‖Hk(M,E)‖ϕ∗
j ‖Hk(M,E∗)

≤C2
1

∑
j

e−ελj
(
1 + λkj

)2 ≤ C2

∑
j

e−ελj /2

since the functionλ 7→ e−ελ/2 (
1 + λk

)2
is bounded forλ ∈ (0,∞). From Weyl’s asymp-

totic formula [5, Corollary 2.43], we know

λj ≥ C3 · jα

for someα > 0. Note that the eigenvalues ofD|H grow at least as fast as those ofD. Hence

‖qz‖Hk(M×M,E�E∗) ≤ C2 ·
∑
j

e−C4·jα < ∞

�

Corollary. If D|H is bounded from below, then

h → Hk(M ×M,E � E∗), z 7→ qz,

is holomorphic for eachk ∈ N andqz(x, y) is smooth in(z, x, y) ∈ h×M ×M.

Next we need a technical uniqueness lemma for holomorphic functions.

Lemma 2. Let f : h = h ∪ R → C be a continuous function and let its restrictionf |h
be holomorphic. If there is a nonempty open intervalI ⊂ R such thatf |I = 0, thenf
vanishes on all ofh.

Proof. Pick t (Fig. 1) in the interior ofI and a small disk1 ⊂ C with centert such that
1 ∩ R ⊂ I .

By Schwarz’s reflection principle we can extendf holomorphically to1. Sincef van-
ishes on1 ∩ R it must vanish on all of1 and therefore on all ofh. �

We need one last tool known asfinite propagation speed.

Lemma 3. LetD : C∞(M,E) → C∞(M,E) be a self-adjoint differential operator of
Dirac type, letψ ∈ L2(M,E). Then for allt ∈ R

ess− supp
(
eitDψ

)
⊂ U|t |(ess− supp(ψ)),
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whereUr (A) = {x ∈ M|dist(x,A) ≤ r} is ther-neighborhood of the subsetA ⊂ M.

The lemma says that the support ofψ grows at most with speed one. See e.g., [10, Proposition
5.5], for a proof.

3. Proof of the theorem

Now we are able to prove the theorem. ReplacingD by −D if necessary we may w.l.o.g.
assume thatD|H is bounded from below. Letψ ∈ H, � ⊂ M open,� 6= ∅, andψ |� = 0.
We want to show thatψ = 0.

Let P� be the projection inL2(M,E) defined by restriction to�,

(P�ϕ) (x) :=
{
ϕ(x), x ∈ �,
0, x ∈ M −�.

Pick any nonempty open subset�′ ⊂⊂ �. By Lemma 3, there is anε > 0, such that

eitDψ |�′ = 0

for all t ∈ [0, ε). Fix ϕ ∈ L2(M,E) and define

fϕ(z) :=
(
ϕ, P�′eizDψ

)
L2(M,E)

=
(
P�′ϕ,eizDψ

)
L2(M,E)

=
(
P�′ϕ,eizD|Hψ

)
L2(M,E)

.

By the corollary to Lemma 1fϕ is holomorphic onh. SinceD|H is bounded from below,
the functionsgz(λ) = eizλ are uniformly bounded on the spectrum ofD|H for all z ∈ h.
Moreover, forzj → z we havegzj → gz locally uniformly. Thus s− limj gzj (D|H) =
gz(D|H). Thereforefϕ is continuous onh.

Sincefϕ vanishes on [0, ε), Lemma 2 impliesfϕ = 0 on h. Sinceϕ is arbitrary this
shows

P�′eizDψ = 0

for all z ∈ h. In particular, forz = it, t > 0, this means

P�′e−tDψ = 0.

It follows thatP�′e−t (D−λ1)ψ = etλ1P�′e−tDψ = 0 for all t > 0. LetPλ1 be the projection
in L2(M,E) onto theλ1-eigenspace forD. Then

0 = lim
t→∞P�′e−t (D−λ1)ψ = P�′ lim

t→∞e−t (D−λ1)ψ = P�′Pλ1ψ.

As an eigensection ofD, Pλ1ψ has the weak unique continuation property, henceP�′Pλ1ψ =
0 implies

Pλ1ψ = 0.
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Now we can replaceλ1 by λ2 and repeat the argument to obtain

Pλ2ψ = 0,

and inductively

ψ = 0.

4. Concluding remarks

The assumption that the operatorD is of Dirac type was made mostly for convenience.
In fact, it was used in a rather inessential way. Lemma 1 holds for any self-adjoint elliptic
differential operator defined over a closed manifold while in Lemma 3 even ellipticity
could be dispensed with. In the proof of the theorem itself we used the unique continuation
property of eigensections of Dirac type operators. Summing up we see that

the theorem holds for all self-adjoint elliptic differential operators of first-order defined
over a closed manifold whose eigensections are known to have the weak unique contin-
uation property.
Note that by (2) this is automatic ifD2 has scalar principal symbol. But that is equivalent

toD being of Dirac type for some Riemannian metric.
One may also try to relax the condition that the underlying manifold is closed. In fact,

the manifold for which the problem was originally considered, namelyR3, is not closed.
Therefore we would like to replace “closed” by “complete”. Closedness ofM has been used
in Lemma 1 since it guarantees discreteness of the spectrum and Weyl’s asymptotic law.
Discreteness of the spectrum is also important for the induction in the proof of the theorem.
Whether or not the theorem also holds for complete manifolds has to be seen. In case ofR

3

this would imply that even in an external field the electron has no localized states.
For eigensections of a Dirac operator much more is known than just the weak unique

continuation property. Namely, ifϕ satisfiesDϕ = λϕ, then the zero set ofϕ has Hausdorff-
dimension≤ n− 2, wheren is the dimension of the manifold [3,4]. We may ask if this is
still true forϕ in our spectral subspace,ϕ ∈ H. The answer, however, is “No”. Look at the
following simple example:

LetM = S1 = R/2πZ, letE be the trivial complex line bundle overM, letD = i(d/dt),
and letϕ(t) = e−it+e−2it . Thenϕ is the sum of two eigenfunctions, hence lies in a subspace
ofL2(S1,C) on whichD is bounded from below and from above. Butϕ has a zero att = π ,
thus the codimension of the zero set is 1 only.
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